Looking for an infrastructure for network analysis for heterogeneous (multiple node types (multi-mode), multiple edge type (multi-relation) and multiple descriptive features (multi-featured)) networks, I've noticed that there are two standard stacks in the Graph Database world:
On one hand we have the ThinkPop/Blueprint property graph model. It is supported by Neo4j, OrientDB GraphDB, Dex, Titan, InfiniteGraph, etc.
The Tinkerpop stack includes the Blueprint property graph model interface, the Gremlin graph traversal language, and the Furnace graph algorithms package.
On the other hand we have W3C's Linked Data technology stack, which is supported by AllegroGraph, 4store, Oracle Database Semantic Technologies, OWLIM, SYSTap BigData, etc.
Semantic data is represented using RDF/RDFS/OWL, and can be queried using SPARQL On top it offers rules and reasoning capabilities.
Now, suppose that I want to represent heterogeneous data in a graph database, and analyse such data (statistics, relations discovery, structure, evolution, etc.) (I know these terms are wide and vague) - What are the relative strengths of each model for various types of network analysis tasks? Do these two models complement each other?