No, I think you're right and it is recursive. It seems to be a variation of the Fibonacci Sequence, a classic recursive problem
Remember, a recursive algorithm has 2 parts:
- The base case
- The recursive call
The base case specifies the point at which you cannot recurse anymore. For example, if you are sorting recursively, the base case is a list of length 1 (since a single item is trivially sorted).
So (assuming n is not negative), you have 2 base cases: n = 0 and n = 1. If your function receives an n value equal to 0 or 1, then it doesn't make sense to recurse anymore
With that in mind, your code should look something like this:
function f(int n):
#check for base case
#if not the base case, perform recursion
So let's use Fibonacci as an example.
In a Fibonacci sequence, each number is the sum of the 2 numbers before it. So, given the sequence 1, 2
the next number is obviously 1 + 2 = 3
and the number after that is 2 + 3 = 5
, 3 + 5 = 8
and so on. Put generically, the nth Fibonacci number is the (n - 1)th Fibonacci Number plus the (n - 2)th Fibonacci Number, or f(n) = f(n - 1) + f(n - 2)
But where does the sequence start? This is were the base case comes in. Fibonacci defined his sequence as starting from 1, 1
. This means that for our pruposes, f(0) = f(1) = 1
. So...
function fibonacci(int n):
if n == 0 or n == 1:
#for any n less than 2
return 1
elif n >= 2:
#for any n 2 or greater
return fibonacci(n-1) + fibonacci(n-2)
else:
#this must n < 0
#throw some error
Note that one of the reasons Fibonacci is taught along with recursion is because it shows that sometimes recursion is a bad idea. I won't get into it here but for large n this recursive approach is very inefficient. The alternative is to have 2 global variables, n1
and n2
such that...
n1 = 1
n2 = 1
print n1
print n2
loop:
n = n1 + n2
n2 = n1
n1 = n
print n
will print the sequence.