Let's we have some integer short sorted arrays and we need to find intersection equal or more then predefined constant. Here is code and it demonstrates what i want to do better then i can explain it in words. The problem is SPEED. My code is working very slow. It takes about 15 sec on 2000 elements array(on my slow machine). Ofcourse i can implement my own intersection method and parallize code but it give a very limited improvement. Execution time growing as N^2 or something and already for 500k arrays it takes a very very long time. So how can i rewrite algorithm for better perfomance? I am not limited c# language maybe CPU or GPU has good special instructions for such job.
Example:
Input:
1,3,7,8
2,3,8,10
3,10,11,12,13,14
minSupport = 1
Output:
1 and 2: 2, 8
1 and 3: 3
2 and 3: 3, 10
var minSupport = 2;
var random = new Random(DateTime.Now.Millisecond);
// Numbers is each array are unique
var sortedArrays = Enumerable.Range(0,2000)
.Select(x => Enumerable.Range(0,30).Select(t => random.Next(1000)).Distinct()
.ToList()).ToList();
var result = new List<int[]>();
var resultIntersection = new List<List<int>>();
foreach (var array in sortedArrays)
{
array.Sort();
}
var sw = Stopwatch.StartNew();
//****MAIN PART*****//
for (int i = 0; i < sortedArrays.Count-1; i++)
{
for (int j = i+1; j < sortedArrays.Count; j++)
{
var intersect = sortedArrays[i].Intersect(sortedArrays[j]).ToList();
if(intersect.Count()>=minSupport)
{
result.Add( new []{i,j});
resultIntersection.Add(intersect);
}
}
}
//*****************//
sw.Stop();
Console.WriteLine(sw.Elapsed);
EDIT:
Now it takes about 9 sec vs 15 sec with old algorithm on 2000 elements. Well...ofcourse it is not fast enough.
//****MAIN PART*****//
// This number(max value which array can contains) is known
var maxValue = 1000;
var reverseIndexDict = new Dictionary<int,List<int>>();
for (int i = 0; i < maxValue; i++)
{
reverseIndexDict[i] = new List<int>();
}
for (int i = 0; i < sortedArrays.Count; i++)
{
for (int j = 0; j < sortedArrays[i].Count; j++)
{
reverseIndexDict[sortedArrays[i][j]].Add(i);
}
}
var tempArr = new List<int>();
for (int i = 0; i < sortedArrays.Count; i++)
{
tempArr.Clear();
for (int j = 0; j < sortedArrays[i].Count; j++)
{
tempArr.AddRange(reverseIndexDict[j]);
}
result.AddRange(tempArr.GroupBy(x => x).Where(x => x.Count()>=minSupport).Select(x => new[]{i,x.Key}).ToList());
}
result = result.Where(x => x[0]!=x[1]).ToList();
for (int i = 0; i < result.Count; i++)
{
resultIntersection.Add(sortedArrays[result[i][0]].Intersect(sortedArrays[result[i][1]]).ToList());
}
//*****************//
EDIT:
Some improvent.
//****MAIN PART*****//
// This number(max value which array can contains) is known
var maxValue = 1000;
var reverseIndexDict = new List<int>[maxValue];
for (int i = 0; i < maxValue; i++)
{
reverseIndexDict[i] = new List<int>();
}
for (int i = 0; i < sortedArrays.Count; i++)
{
for (int j = 0; j < sortedArrays[i].Count; j++)
{
reverseIndexDict[sortedArrays[i][j]].Add(i);
}
}
for (int i = 0; i < sortedArrays.Count; i++)
{
var tempArr = new Dictionary<int, List<int>>();
for (int j = 0; j < sortedArrays[i].Count; j++)
{
var sortedArraysij = sortedArrays[i][j];
for (int k = 0; k < reverseIndexDict[sortedArraysij].Count; k++)
{
if(!tempArr.ContainsKey(reverseIndexDict[sortedArraysij][k]))
{
tempArr[reverseIndexDict[sortedArraysij][k]] = new[]{sortedArraysij}.ToList();
}
else
{
tempArr[reverseIndexDict[sortedArraysij][k]].Add(sortedArrays[i][j]);
}
}
}
for (int j = 0; j < reverseIndexDict.Length; j++)
{
if(reverseIndexDict[j].Count>=minSupport)
{
result.Add(new[]{i,j});
resultIntersection.Add(reverseIndexDict[j]);
}
}
}
// and here we are filtering collections
//*****************//