I wrote the following:
(fn r [f xs]
(lazy-seq
(if (empty? xs)
'()
(cons (f (first xs)) (r f (rest xs))))))
to solve 4clojure.com's problem #118: http://www.4clojure.com/problem/118
which asks to reimplement map without using map etc. and that solution passes the tests (I don't know if it's correct or not: it's very close to other solutions that said).
Because the problem stated that it had to be lazy I wrote the code above by "wrapping" my solution in a lazy-seq... However I don't understand how lazy-seq works.
I don't understand what is "lazy" here nor how I could test it out.
When I ask (type ...)
I get, unsurprisingly, a clojure.lang.LazySeq but I don't know what's the difference between that and what I get if I simply remove the lazy-seq "wrapping".
Now of course if I remove the lazy-seq I get a stackoverflow why trying to execute this:
(= [(int 1e6) (int (inc 1e6))]
(->> (... inc (range))
(drop (dec 1e6))
(take 2)))
Otherwise (that is: if I let the lazy-seq wrapping in place), it seems to work fine.
So I decided to try to somehow "debug" / trace what is going on to try to understand how it all works. I took the following macro (which I found on SO IIRC):
(defmacro dbg [x] `(let [x# ~x] (println "dbg: " '~x "=" x#) x#))
And wrapped the working version inside the dbg macro and tried to execute it again. And now kaboom: the version which worked fine now throws a stackoverflow too.
Now I'm not sure: maybe it's an unwanted effect of the macro that would somehow force the evalution of stuff that otherwise wouldn't be evaluated?
It would be great if anyone could explain, using this simple function and the simple test, how lazyness does work here, what exactly gets called when, etc.