The query:
SELECT "replays_game".*
FROM "replays_game"
INNER JOIN
"replays_playeringame" ON "replays_game"."id" = "replays_playeringame"."game_id"
WHERE "replays_playeringame"."player_id" = 50027
If I set SET enable_seqscan = off
, then it does the fast thing, which is:
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
Nested Loop (cost=0.00..27349.80 rows=3395 width=72) (actual time=28.726..65.056 rows=3398 loops=1)
-> Index Scan using replays_playeringame_player_id on replays_playeringame (cost=0.00..8934.43 rows=3395 width=4) (actual time=0.019..2.412 rows=3398 loops=1)
Index Cond: (player_id = 50027)
-> Index Scan using replays_game_pkey on replays_game (cost=0.00..5.41 rows=1 width=72) (actual time=0.017..0.017 rows=1 loops=3398)
Index Cond: (id = replays_playeringame.game_id)
Total runtime: 65.437 ms
But without the dreaded enable_seqscan, it chooses to do a slower thing:
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
Hash Join (cost=7330.18..18145.24 rows=3395 width=72) (actual time=92.380..535.422 rows=3398 loops=1)
Hash Cond: (replays_playeringame.game_id = replays_game.id)
-> Index Scan using replays_playeringame_player_id on replays_playeringame (cost=0.00..8934.43 rows=3395 width=4) (actual time=0.020..2.899 rows=3398 loops=1)
Index Cond: (player_id = 50027)
-> Hash (cost=3668.08..3668.08 rows=151208 width=72) (actual time=90.842..90.842 rows=151208 loops=1)
Buckets: 1024 Batches: 32 (originally 16) Memory Usage: 1025kB
-> Seq Scan on replays_game (cost=0.00..3668.08 rows=151208 width=72) (actual time=0.020..29.061 rows=151208 loops=1)
Total runtime: 535.821 ms
Here are the relevant indexes:
Index "public.replays_game_pkey"
Column | Type | Definition
--------+---------+------------
id | integer | id
primary key, btree, for table "public.replays_game"
Index "public.replays_playeringame_player_id"
Column | Type | Definition
-----------+---------+------------
player_id | integer | player_id
btree, for table "public.replays_playeringame"
So my question is, what am I doing wrong that Postgres is mis-estimating the relative costs of the two ways of joining? I see in the cost estimates that it thinks the hash-join will be faster. And its estimate of the cost of the index-join is off by a factor of 500.
How can I give Postgres more of a clue? I did run a VACUUM ANALYZE
immediately before running all of the above.
Interestingly, if I run this query for a player with a smaller # of games, Postgres chooses to do the index-scan + nested-loop. So something about the large # of games tickles this undesired behavior where relative estimated cost is out of line with actual estimated cost.
Finally, should I be using Postgres at all? I don't wish to become an expert in database tuning, so I'm looking for a database that will perform reasonably well with a conscientious developer's level of attention, as opposed to a dedicated DBA. I am afraid that if I stick with Postgres I will have a steady stream of issues like this that will force me to become a Postgres expert, and perhaps another DB will be more forgiving of a more casual approach.
A Postgres expert (RhodiumToad) reviewed my full database settings (http://pastebin.com/77QuiQSp) and recommended set cpu_tuple_cost = 0.1
. That gave a dramatic speedup: http://pastebin.com/nTHvSHVd
Alternatively, switching to MySQL also solved the problem pretty nicely. I have a default installation of MySQL and Postgres on my OS X box, and MySQL is 2x faster, comparing queries that are "warmed up" by repeatedly executing the query. On "cold" queries, i.e. the first time a given query is executed, MySQL is 5 to 150 times faster. The performance of cold queries is pretty important for my particular application.
The big question, as far as I'm concerned, is still outstanding -- will Postgres require more fiddling and configuration to run well than MySQL? For example, consider that none of the suggestions offered by the commenters here worked.