When traversing a multiply-connected graph, the order in which nodes are traversed may greatly influence (by many orders of magnitude) the number of nodes to be tracked by the traversing method. Some kinds of algorithms will be massively better when using breadth-first; others will be massively better when using depth-search.
At one extreme, doing a depth-first search on a binary tree with N leaf nodes requires that the traversing method keep track of lgN nodes while a breadth-first search would require keeping track of at least N/2 nodes (since it might scan all other nodes before it scans any leaf nodes; immediately prior to scanning the first leaf node, it would have encountered N/2 of the leafs' parent nodes which have to be tracked separately since none of them reference each other).
On the other extreme, doing a flood-fill on an NxN grid with a method that, if its pixel hasn't been colored yet, colors that pixel and then flood-fills its neighbors will require enqueuing O(N) pixel coordinates if using breadth-first search, but O(N^2) pixel coordinates if using depth-first. When using breadth-first search, paint will seem to "spread out", regardless of the shape to be painted; when using depth-first algorithm to paint a rectangular spiral, each line of which is straight on one side and jagged on the other (which sides should be straight and jagged depends upon the exact algorithm used), all of the straight sections will get painted before any of the jagged ones, meaning that the system must track the location of every jag separately.