0

i want to solve this equation...

 | 1     1     1 | |b0| |exp(t)  |
 | 0     1     2 | |b1|=|exp(t)  |
 | 1     1     1 | |b2| |exp(2*t)|

i like the answer be like this:

for example:

b0=2*exp(t)+exp(2*t) b1=exp(t)+1 b2=exp(

Ben Voigt
  • 277,958
  • 43
  • 419
  • 720
mjjv
  • 3
  • 2

1 Answers1

1

That matrix is singular, so there's no unique solution (depending on t, there may be zero or infinitely many solutions). I will replace it with an invertible matrix to demonstrate the method:

>> A = [1,1,1;0,1,2;1,1,0]

A =

     1     1     1
     0     1     2
     1     1     0

After that, solving is a straightforward use of the symbolic capability:

>> t = sym('t');
>> rhs = [exp(t);exp(t);exp(2*t)]

rhs =

   exp(t)
   exp(t)
 exp(2*t)
>> b = A\rhs

b =

   exp(t) - exp(2*t)
 2*exp(2*t) - exp(t)
   exp(t) - exp(2*t)
Ben Voigt
  • 277,958
  • 43
  • 419
  • 720
  • Hi mr. Ben Voigt...thank you for your help...but i hace matrix like this |0 -2 1 | % a= |-1 -2 2 | % |0 -2 1 | that i wanted to solve it in hamilton style(e^at) and the ansert must be like this form(parametric) |2e^t-e^2t 0 2e^t-2e^2t| | 0 e^t 0 | |e^2t 0 2e^2t-e^t | but thank you for replying anyway..be goodluck. – mjjv Apr 30 '12 at 13:55