It depends on which sparse matrix format you use. Apparently lil_matrix
and dok_matrix
can use slice assignments.
To construct a matrix efficiently, use either lil_matrix (recommended)
or dok_matrix. The lil_matrix class supports basic slicing and fancy
indexing with a similar syntax to NumPy arrays.
Which makes this rather easy:
In : x = scipy.sparse.lil_matrix(np.ones((6,6)))
In : x.todense()
Out:
matrix([[ 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1.]])
In : x[:, 0] = 0
In : x[:, -1] = 0
In : x[0, :] = 0
In : x[-1, :] = 0
In : x.todense()
Out:
matrix([[ 0., 0., 0., 0., 0., 0.],
[ 0., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 1., 0.],
[ 0., 0., 0., 0., 0., 0.]])
PS: FYI, your matrix is called tridiagonal, not diagonal.