Does anyone know how to make the following Matlab code approximate the exponential function more accurately when dealing with large and negative real numbers?
For example when x = 1, the code works well, when x = -100, it returns an answer of 8.7364e+31 when it should be closer to 3.7201e-44.
The code is as follows:
s=1
a=1;
y=1;
for k=1:40
a=a/k;
y=y*x;
s=s+a*y;
end
s
Any assistance is appreciated, cheers.
EDIT:
Ok so the question is as follows:
Which mathematical function does this code approximate? (I say the exponential function.) Does it work when x = 1? (Yes.) Unfortunately, using this when x = -100 produces the answer s = 8.7364e+31. Your colleague believes that there is a silly bug in the program, and asks for your assistance. Explain the behaviour carefully and give a simple fix which produces a better result. [You must suggest a modification to the above code, or it's use. You must also check your simple fix works.]
So I somewhat understand that the problem surrounds large numbers when there is 16 (or more) orders of magnitude between terms, precision is lost, but the solution eludes me.
Thanks
EDIT:
So in the end I went with this:
s = 1;
x = -100;
a = 1;
y = 1;
x1 = 1;
for k=1:40
x1 = x/10;
a = a/k;
y = y*x1;
s = s + a*y;
end
s = s^10;
s
Not sure if it's completely correct but it returns some good approximations.
exp(-100) = 3.720075976020836e-044
s = 3.722053303838800e-044
After further analysis (and unfortunately submitting the assignment), I realised increasing the number of iterations, and thus increasing terms, further improves efficiency. In fact the following was even more efficient:
s = 1;
x = -100;
a = 1;
y = 1;
x1 = 1;
for k=1:200
x1 = x/200;
a = a/k;
y = y*x1;
s = s + a*y;
end
s = s^200;
s
Which gives:
exp(-100) = 3.720075976020836e-044
s = 3.720075976020701e-044