Fürer's algorithm and it's modular equivalent (DSKS) are very deep research topics and, for now, remain only as academic interest. Nobody actually knows how big the cross-over point is. And in all likeliness it doesn't matter because that cross-over point is likely to be well beyond 64-bit computing limits.
I've implemented Schönhage-Strassen before and I understand how Fürer's algorithm works. So I'm quite familiar with both of them. I can say it's very possible that the cross-over point between Schönhage-Strassen and Fürer's algorithm is so high that a computer capable of holding the parameters will be larger than the size of the observable universe.
That's the problem when you have complexities that differ by less than a logarithm. It takes exponentially large input sizes to compensate even for small differences in the Big-O constant.
In this case, Fürer's algorithm is known to have a very very very large Big-O constant.