I'm a machine learning newbie trying to understand how Adaboost works.
I've read many articles explaining how Adaboost makes use of set of weak *classifiers* to create a strong classifier.
However, I seem to have problem understanding the statement that "Adaboost creates a Strong Classifier".
When I looked at implementations of Adaboost, I've realized that it doesn't "actually" create a Strong Classifier but somehow in the TESTING PHASE figures out on "how to use set of Weak Classifiers to get more accurate results" which in turn acts like a strong classifier "Collectively".
So technically there is NO SINGLE STRONG CLASSIFIER created (but set of weak classifiers collectively act as a strong classifier).
Please correct me if I'm wrong. It would be nice if someone can throw in some comments regarding this.