Zeuthen–Segre invariant

In algebraic geometry, the Zeuthen–Segre invariant I is an invariant of a projective surface found in a complex projective space which was introduced by Zeuthen (1871) and rediscovered by Corrado Segre (1896).

The invariant I is defined to be d  4g  b if the surface has a pencil of curves, non-singular of genus g except for d curves with 1 ordinary node, and with b base points where the curves are non-singular and transverse.

Alexander (1914) showed that the Zeuthen–Segre invariant I is χ–4, where χ is the topological Euler–Poincaré characteristic introduced by Poincaré (1895), which is equal to the Chern number c2 of the surface.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.