Whitney immersion theorem

In differential topology, the Whitney immersion theorem (named after Hassler Whitney) states that for , any smooth -dimensional manifold (required also to be Hausdorff and second-countable) has a one-to-one immersion in Euclidean -space, and a (not necessarily one-to-one) immersion in -space. Similarly, every smooth -dimensional manifold can be immersed in the -dimensional sphere (this removes the constraint).

The weak version, for , is due to transversality (general position, dimension counting): two m-dimensional manifolds in intersect generically in a 0-dimensional space.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.