Virtual displacement

In analytical mechanics, a branch of applied mathematics and physics, a virtual displacement (or infinitesimal variation) shows how the mechanical system's trajectory can hypothetically (hence the term virtual) deviate very slightly from the actual trajectory of the system without violating the system's constraints.:263 For every time instant is a vector tangential to the configuration space at the point The vectors show the directions in which can "go" without breaking the constraints.

One degree of freedom.
Two degrees of freedom.
Constraint force C and virtual displacement δr for a particle of mass m confined to a curve. The resultant non-constraint force is N. The components of virtual displacement are related by a constraint equation.

For example, the virtual displacements of the system consisting of a single particle on a two-dimensional surface fill up the entire tangent plane, assuming there are no additional constraints.

If, however, the constraints require that all the trajectories pass through the given point at the given time i.e. then

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.