Viola–Jones object detection framework

The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.

The algorithm is efficient for its time, able to detect faces in 384 by 288 pixel images at 15 frames per second on a conventional 700 MHz Intel Pentium III. It is also robust, achieving high precision and recall.

While it has lower accuracy than more modern methods such as convolutional neural network, its efficiency and compact size (only around 50k parameters, compared to millions of parameters for typical CNN like DeepFace) means it is still used in cases with limited computational power. For example, in the original paper, they reported that this face detector could run on the Compaq iPAQ at 2 fps (this device has a low power StrongARM without floating point hardware).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.