Upper-convected time derivative

In continuum mechanics, including fluid dynamics, an upper-convected time derivative or Oldroyd derivative, named after James G. Oldroyd, is the rate of change of some tensor property of a small parcel of fluid that is written in the coordinate system rotating and stretching with the fluid.

The operator is specified by the following formula:

where:

  • is the upper-convected time derivative of a tensor field
  • is the substantive derivative
  • is the tensor of velocity derivatives for the fluid.

The formula can be rewritten as:

By definition, the upper-convected time derivative of the Finger tensor is always zero.

It can be shown that the upper-convected time derivative of a spacelike vector field is just its Lie derivative by the velocity field of the continuum.

The upper-convected derivative is widely used in polymer rheology for the description of the behavior of a viscoelastic fluid under large deformations.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.