Universal differential equation

A universal differential equation (UDE) is a non-trivial differential algebraic equation with the property that its solutions can approximate any continuous function on any interval of the real line to any desired level of accuracy.

Precisely, a (possibly implicit) differential equation is a UDE if for any continuous real-valued function and for any positive continuous function there exist a smooth solution of with for all .

The existence of an UDE has been initially regarded as an analogue of the universal Turing machine for analog computers, because of a result of Shannon that identifies the outputs of the general purpose analog computer with the solutions of algebraic differential equations. However, in contrast to universal Turing machines, UDEs do not dictate the evolution of a system, but rather sets out certain conditions that any evolution must fulfill.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.