Reciprocals of primes

The reciprocals of prime numbers have been of interest to mathematicians for various reasons. They do not have a finite sum, as Leonhard Euler proved in 1737.

Like all rational numbers, the reciprocals of primes have repeating decimal representations. In his later years, George Salmon (1819–1904) concerned himself with the repeating periods of these decimal representations of reciprocals of primes.

Contemporaneously, William Shanks (1812–1882) calculated numerous reciprocals of primes and their repeating periods, and published two papers "On Periods in the Reciprocals of Primes" in 1873 and 1874. In 1874 he also published a table of primes, and the periods of their reciprocals, up to 20,000 (with help from and "communicated by the Rev. George Salmon"), and pointed out the errors in previous tables by three other authors.

The last part of Shanks's 1874 table of primes and their repeating periods. In the top row, 6952 should be 6592 (the error is easy to find, since the period for a prime p must divide p − 1). In his report extending the table to 30,000 in the same year, Shanks did not report this error, but reported that in the same column, opposite 19841, the 1984 should be 64. *Another error which may have been corrected since his work was published is opposite 19423, the reciprocal repeats every 6474 digits, not every 3237.

Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. For a prime p, the period of its reciprocal divides p − 1.

The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.