Two-domain system
The two-domain system is a biological classification by which all organisms in the tree of life are classified into two big domains, Bacteria and Archaea. It emerged from development of knowledge of archaea diversity and challenges to the widely accepted three-domain system that defines life into Bacteria, Archaea, and Eukarya. It was preceded by the eocyte hypothesis of James A. Lake in the 1980s, which was largely superseded by the three-domain system, due to evidence at the time. Better understanding of archaea, especially of their roles in the origin of eukaryotes through symbiogenesis with bacteria, led to the revival of the eocyte hypothesis in the 2000s. The two-domain system became more widely accepted after the discovery of a large group (superphylum) of archaea called Asgard in 2017, which evidence suggests to be the evolutionary root of eukaryotes, implying that eukaryotes are members of the domain Archaea.
While the features of Asgard archaea do not directly rule out the three-domain system, the notion that eukaryotes originated from archaea and thus belong to Archaea has been strengthened by genetic and proteomic studies. Under the three-domain system, Eukarya is mainly distinguished by the presence of "eukaryotic signature proteins", that are not found in archaea and bacteria. However, Asgards contain genes that code for multiple such proteins, indicating that "eukaryotic signature proteins" originated in archaea.