Twin-arginine translocation pathway

The twin-arginine translocation pathway (Tat pathway) is a protein export, or secretion pathway found in plants, bacteria, and archaea. In contrast to the Sec pathway which transports proteins in an unfolded manner, the Tat pathway serves to actively translocate folded proteins across a lipid membrane bilayer. In plants, the Tat translocase is located in the thylakoid membrane of the chloroplast, where it acts to export proteins into the thylakoid lumen. In bacteria, the Tat translocase is found in the cytoplasmic membrane and serves to export proteins to the cell envelope, or to the extracellular space. The existence of a Tat translocase in plant mitochondria is also proposed.

TatC
Identifiers
SymbolTatC
PfamPF00902
InterProIPR002033
TCDB2.A.64
OPM superfamily63
OPM protein4b4a
Membranome435
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
TatA/B/E
Identifiers
SymbolMttA_Hcf106
PfamPF02416
InterProIPR003369
TCDB2.A.64
OPM superfamily63
OPM protein2l16
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

In the plant thylakoid membrane and in Gram-negative bacteria the Tat translocase is composed of three essential membrane proteins; TatA, TatB, and TatC. In the most widely studied Tat pathway, that of the Gram-negative bacterium Escherichia coli, these three proteins are expressed from an operon with a fourth Tat protein, TatD, which is not required for Tat function. A fifth Tat protein TatE that is homologous to the TatA protein is present at a much lower level in the cell than TatA and is not believed to play any significant role in Tat function.

The Tat pathways of Gram-positive bacteria differ in that they do not have a TatB component. In these bacteria the Tat system is made up from a single TatA and TatC component, with the TatA protein being bifunctional and fulfilling the roles of both E. coli TatA and TatB.

The name of the Tat pathway relates to a highly conserved twin-arginine leader motif (S/TRRXFLK) which is found in the N terminal Signal peptide of the corresponding passenger proteins. The signal peptide is removed by a signal peptidase after release of the transported protein from the Tat complex. At least two TatC molecules co-exist within each Tat translocon.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.