Transitive closure

In mathematics, the transitive closure R+ of a homogeneous binary relation R on a set X is the smallest relation on X that contains R and is transitive. For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets R+ is the unique minimal transitive superset of R.

For example, if X is a set of airports and x R y means "there is a direct flight from airport x to airport y" (for x and y in X), then the transitive closure of R on X is the relation R+ such that x R+ y means "it is possible to fly from x to y in one or more flights".

More formally, the transitive closure of a binary relation R on a set X is the smallest (w.r.t. ⊆) transitive relation R+ on X such that RR+; see Lidl & Pilz (1998, p. 337). We have R+ = R if, and only if, R itself is transitive.

Conversely, transitive reduction adduces a minimal relation S from a given relation R such that they have the same closure, that is, S+ = R+; however, many different S with this property may exist.

Both transitive closure and transitive reduction are also used in the closely related area of graph theory.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.