Theorem on formal functions

In algebraic geometry, the theorem on formal functions states the following:

Let be a proper morphism of noetherian schemes with a coherent sheaf on X. Let be a closed subscheme of S defined by and formal completions with respect to and . Then for each the canonical (continuous) map:
is an isomorphism of (topological) -modules, where
  • The left term is .
  • The canonical map is one obtained by passage to limit.

The theorem is used to deduce some other important theorems: Stein factorization and a version of Zariski's main theorem that says that a proper birational morphism into a normal variety is an isomorphism. Some other corollaries (with the notations as above) are:

Corollary: For any , topologically,

where the completion on the left is with respect to .

Corollary: Let r be such that for all . Then

Corollay: For each , there exists an open neighborhood U of s such that

Corollary: If , then is connected for all .

The theorem also leads to the Grothendieck existence theorem, which gives an equivalence between the category of coherent sheaves on a scheme and the category of coherent sheaves on its formal completion (in particular, it yields algebralizability.)

Finally, it is possible to weaken the hypothesis in the theorem; cf. Illusie. According to Illusie (pg. 204), the proof given in EGA III is due to Serre. The original proof (due to Grothendieck) was never published.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.