Theorem of the highest weight
In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra . There is a closely related theorem classifying the irreducible representations of a connected compact Lie group . The theorem states that there is a bijection
from the set of "dominant integral elements" to the set of equivalence classes of irreducible representations of or . The difference between the two results is in the precise notion of "integral" in the definition of a dominant integral element. If is simply connected, this distinction disappears.
The theorem was originally proved by Élie Cartan in his 1913 paper. The version of the theorem for a compact Lie group is due to Hermann Weyl. The theorem is one of the key pieces of representation theory of semisimple Lie algebras.