Tetrodotoxin

Tetrodotoxin (TTX) is a potent neurotoxin. Its name derives from Tetraodontiformes, an order that includes pufferfish, porcupinefish, ocean sunfish, and triggerfish; several of these species carry the toxin. Although tetrodotoxin was discovered in these fish, it is found in several other animals (e.g., in blue-ringed octopuses, rough-skinned newts, and moon snails). It is also produced by certain infectious or symbiotic bacteria like Pseudoalteromonas, Pseudomonas, and Vibrio as well as other species found in symbiotic relationships with animals and plants.

Tetrodotoxin
Names
IUPAC name
(4R,4aR,5R,6S,7S,8S,8aR,10S,12S)-2-azaniumylidene-4,6,8,12-tetrahydroxy-6-(hydroxymethyl)-2,3,4,4a,5,6,7,8-octahydro-1H-8a,10-methano-5,7-(epoxymethanooxy)quinazolin-10-olate
Other names
anhydrotetrodotoxin, 4-epitetrodotoxin, tetrodonic acid, TTX
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.022.236
KEGG
UNII
  • InChI=1S/C11H17N3O8/c12-8-13-6(17)2-4-9(19,1-15)5-3(16)10(2,14-8)7(18)11(20,21-4)22-5/h2-7,15-20H,1H2,(H3,12,13,14)/t2-,3-,4-,5+,6-,7+,9+,10-,11+/m1/s1 N
    Key: CFMYXEVWODSLAX-QOZOJKKESA-N N
  • InChI=1/C11H17N3O8/c12-8-13-6(17)2-4-9(19,1-15)5-3(16)10(2,14-8)7(18)11(20,21-4)22-5/h2-7,15-20H,1H2,(H3,12,13,14)/t2-,3-,4-,5+,6-,7+,9+,10-,11+/m1/s1
    Key: CFMYXEVWODSLAX-QOZOJKKEBM
  • O1[C@@H]4[C@@](O)([C@@H]3O[C@@]1(O)[C@@H](O)[C@]2(N\C(N/[C@H](O)[C@H]23)=N)[C@@H]4O)CO
  • zwitterion: O1[C@@H]4[C@@](O)([C@@H]3O[C@@]1([O-])[C@@H](O)[C@]2(N\C(N/[C@H](O)[C@H]23)=[NH2+])[C@@H]4O)CO
Properties
C11H17N3O8
Molar mass 319.270 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Although it produces thousands of intoxications annually and several deaths, it has shown efficacy for the treatment of cancer-related pain in phase II and III clinical trials.

Tetrodotoxin is a sodium channel blocker. It inhibits the firing of action potentials in neurons by binding to the voltage-gated sodium channels in nerve cell membranes and blocking the passage of sodium ions (responsible for the rising phase of an action potential) into the neuron. This prevents the nervous system from carrying messages and thus muscles from contracting in response to nervous stimulation.

Its mechanism of action, selective blocking of the sodium channel, was shown definitively in 1964 by Toshio Narahashi and John W. Moore at Duke University, using the sucrose gap voltage clamp technique.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.