Tensor–vector–scalar gravity
Tensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.
The main features of TeVeS can be summarized as follows:
- As it is derived from the action principle, TeVeS respects conservation laws;
- In the weak-field approximation of the spherically symmetric, static solution, TeVeS reproduces the MOND acceleration formula;
- TeVeS avoids the problems of earlier attempts to generalize MOND, such as superluminal propagation;
- As it is a relativistic theory it can accommodate gravitational lensing.
The theory is based on the following ingredients:
- A unit vector field;
- A dynamical scalar field;
- A nondynamical scalar field;
- A matter Lagrangian constructed using an alternate metric;
- An arbitrary dimensionless function.
These components are combined into a relativistic Lagrangian density, which forms the basis of TeVeS theory.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.