Tarski's high school algebra problem
In mathematical logic, Tarski's high school algebra problem was a question posed by Alfred Tarski. It asks whether there are identities involving addition, multiplication, and exponentiation over the positive integers that cannot be proved using eleven axioms about these operations that are taught in high-school-level mathematics. The question was solved in 1980 by Alex Wilkie, who showed that such unprovable identities do exist.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.