Symplectic spinor bundle
In differential geometry, given a metaplectic structure on a -dimensional symplectic manifold the symplectic spinor bundle is the Hilbert space bundle associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group — the two-fold covering of the symplectic group — gives rise to an infinite rank vector bundle; this is the symplectic spinor construction due to Bertram Kostant.
A section of the symplectic spinor bundle is called a symplectic spinor field.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.