Sturm–Liouville theory

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form:

for given functions , and , together with some boundary conditions at extreme values of . The goals of a given Sturm–Liouville problem are:

  • To find the λ for which there exists a non-trivial solution to the problem. Such values λ are called the eigenvalues of the problem.
  • For each eigenvalue λ, to find the corresponding solution of the problem. Such functions are called the eigenfunctions associated to each λ.

Sturm–Liouville theory is the general study of Sturm–Liouville problems. In particular, for a "regular" Sturm–Liouville problem, it can be shown that there are an infinite number of eigenvalues each with a unique eigenfunction, and that these eigenfunctions form an orthonormal basis of a certain Hilbert space of functions.

This theory is important in applied mathematics, where Sturm–Liouville problems occur very frequently, particularly when dealing with separable linear partial differential equations. For example, in quantum mechanics, the one-dimensional time-independent Schrödinger equation is a Sturm–Liouville problem.

Sturm–Liouville theory is named after Jacques Charles François Sturm (1803–1855) and Joseph Liouville (1809–1882) who developed the theory.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.