Stone–Čech compactification

In the mathematical discipline of general topology, Stone–Čech compactification (or Čech–Stone compactification) is a technique for constructing a universal map from a topological space X to a compact Hausdorff space βX. The Stone–Čech compactification βX of a topological space X is the largest, most general compact Hausdorff space "generated" by X, in the sense that any continuous map from X to a compact Hausdorff space factors through βX (in a unique way). If X is a Tychonoff space then the map from X to its image in βX is a homeomorphism, so X can be thought of as a (dense) subspace of βX; every other compact Hausdorff space that densely contains X is a quotient of βX. For general topological spaces X, the map from X to βX need not be injective.

A form of the axiom of choice is required to prove that every topological space has a Stone–Čech compactification. Even for quite simple spaces X, an accessible concrete description of βX often remains elusive. In particular, proofs that βX \ X is nonempty do not give an explicit description of any particular point in βX \ X.

The Stone–Čech compactification occurs implicitly in a paper by Andrey Nikolayevich Tychonoff (1930) and was given explicitly by Marshall Stone (1937) and Eduard Čech (1937).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.