Sphere bundle
In the mathematical field of topology, a sphere bundle is a fiber bundle in which the fibers are spheres of some dimension n. Similarly, in a disk bundle, the fibers are disks . From a topological perspective, there is no difference between sphere bundles and disk bundles: this is a consequence of the Alexander trick, which implies
An example of a sphere bundle is the torus, which is orientable and has fibers over an base space. The non-orientable Klein bottle also has fibers over an base space, but has a twist that produces a reversal of orientation as one follows the loop around the base space.
A circle bundle is a special case of a sphere bundle.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.