ε-quadratic form

In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.

There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms. More briefly, one may refer to quadratic, skew-quadratic, symmetric, and skew-symmetric forms, where "skew" means () and the * (involution) is implied.

The theory is 2-local: away from 2, ε-quadratic forms are equivalent to ε-symmetric forms: half the symmetrization map (below) gives an explicit isomorphism.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.