Shimizu L-function
In mathematics, the Shimizu L-function, introduced by Hideo Shimizu (1963), is a Dirichlet series associated to a totally real algebraic number field. Michael Francis Atiyah, H. Donnelly, and I. M. Singer (1983) defined the signature defect of the boundary of a manifold as the eta invariant, the value as s=0 of their eta function, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at s=0 or 1 of a Shimizu L-function.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.