Separation energy
In nuclear physics, separation energy is the energy needed to remove one nucleon (or other specified particle or particles) from an atomic nucleus.
Nuclear physics |
---|
|
The separation energy is different for each nuclide and particle to be removed. Values are stated as "neutron separation energy", "two-neutron separation energy", "proton separation energy", "deuteron separation energy", "alpha separation energy", and so on.
The lowest separation energy among stable nuclides is 1.67 MeV, to remove a neutron from beryllium-9.
The energy can be added to the nucleus by an incident high-energy gamma ray. If the energy of the incident photon exceeds the separation energy, a photodisintegration might occur. Energy in excess of the threshold value becomes kinetic energy of the ejected particle.
By contrast, nuclear binding energy is the energy needed to completely disassemble a nucleus, or the energy released when a nucleus is assembled from nucleons. It is the sum of multiple separation energies, which should add to the same total regardless of the order of assembly or disassembly.