Diagonal morphism (algebraic geometry)

In algebraic geometry, given a morphism of schemes , the diagonal morphism

is a morphism determined by the universal property of the fiber product of p and p applied to the identity and the identity .

It is a special case of a graph morphism: given a morphism over S, the graph morphism of it is induced by and the identity . The diagonal embedding is the graph morphism of .

By definition, X is a separated scheme over S ( is a separated morphism) if the diagonal morphism is a closed immersion. Also, a morphism locally of finite presentation is an unramified morphism if and only if the diagonal embedding is an open immersion.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.