Semistable abelian variety

In algebraic geometry, a semistable abelian variety is an abelian variety defined over a global or local field, which is characterized by how it reduces at the primes of the field.

For an abelian variety defined over a field with ring of integers , consider the Néron model of , which is a 'best possible' model of defined over . This model may be represented as a scheme over (cf. spectrum of a ring) for which the generic fibre constructed by means of the morphism gives back . The Néron model is a smooth group scheme, so we can consider , the connected component of the Néron model which contains the identity for the group law. This is an open subgroup scheme of the Néron model. For a residue field , is a group variety over , hence an extension of an abelian variety by a linear group. If this linear group is an algebraic torus, so that is a semiabelian variety, then has semistable reduction at the prime corresponding to . If is a global field, then is semistable if it has good or semistable reduction at all primes.

The fundamental semistable reduction theorem of Alexander Grothendieck states that an abelian variety acquires semistable reduction over a finite extension of .

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.