SETI@home

SETI@home ("SETI at home") is a project of the Berkeley SETI Research Center to analyze radio signals with the aim of searching for signs of extraterrestrial intelligence. Until March 2020, it was run as an Internet-based public volunteer computing project that employed the BOINC software platform. It is hosted by the Space Sciences Laboratory at the University of California, Berkeley, and is one of many activities undertaken as part of the worldwide SETI effort.

SETI@home
screensaver with custom background
Developer(s)University of California, Berkeley
Initial releaseMay 17, 1999 (1999-05-17)
Stable releaseSETI@home v8:8.00 / December 30, 2015 (2015-12-30)

SETI@home v8 for NVIDIA and AMD/ATi GPU Card:8.12/
May 19, 2016 (2016-05-19)
AstroPulse v7:7.00/
October 7, 2014 (2014-10-07)

AstroPulse v7 for nVidia and AMD/ATi GPU Card:7.10/
April 23, 2015 (2015-04-23)
Development statusIn hibernation
Project goal(s)Discovery of radio evidence of extraterrestrial life
FundingPublic funding and private donations
Operating systemMicrosoft Windows, Linux, Android, macOS, Solaris,
IBM AIX, FreeBSD, DragonflyBSD, OpenBSD, NetBSD, HP-UX, IRIX, Tru64 Unix, OS/2 Warp, eComStation
PlatformCross-platform
TypeVolunteer computing
LicenseGPL
Active users 91,454 (March 2020)
Total users 1,803,163 (March 2020)
Active hosts144,779 (March 2020)
Total hosts165,178 (March 2020)
Websitesetiathome.berkeley.edu

SETI@home software was released to the public on May 17, 1999, making it the third large-scale use of volunteer computing over the Internet for research purposes, after Great Internet Mersenne Prime Search (GIMPS) was launched in 1996 and distributed.net in 1997. Along with MilkyWay@home and Einstein@home, it is the third major computing project of this type that has the investigation of phenomena in interstellar space as its primary purpose.

In March 2020, the project stopped sending out new work to SETI@home users, bringing the crowdsourced computing aspect of the project to a stop. At the time, the team intended to shift focus onto the analysis and interpretation of the 20 years' worth of accumulated data. However, the team left open the possibility of eventually resuming volunteer computing using data from other radio telescopes, such as MeerKAT and FAST.

As of November 2021, the science team has analysed the data and removed noisy signals (Radio Frequency Interference) using the Nebula tool they developed and will choose the top-scoring 100 or so multiplets to be observed using the Five-hundred-meter Aperture Spherical Telescope, to which they have been granted 24 hours of observation time.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.