SETAR (model)
In statistics, Self-Exciting Threshold AutoRegressive (SETAR) models are typically applied to time series data as an extension of autoregressive models, in order to allow for higher degree of flexibility in model parameters through a regime switching behaviour.
Given a time series of data xt, the SETAR model is a tool for understanding and, perhaps, predicting future values in this series, assuming that the behaviour of the series changes once the series enters a different regime. The switch from one regime to another depends on the past values of the x series (hence the Self-Exciting portion of the name).
The model consists of k autoregressive (AR) parts, each for a different regime. The model is usually referred to as the SETAR(k, p) model where k is the number of threshold, there are k+1 number of regime in the model, and p is the order of the autoregressive part (since those can differ between regimes, the p portion is sometimes dropped and models are denoted simply as SETAR(k).