Plant root exudates
Plant root exudates are fluids emitted through the roots of plants. These secretions influence the rhizosphere around the roots to inhibit harmful microbes and promote the growth of self and kin plants.
Plant root systems can grow to be complex due to a variety of species and microorganisms existing in a common soil. Plants have adapted to respond to the soil conditions and presence of microbes through various mechanisms, one of which is the secretion of root exudates. This secretion allows plants to largely influence the rhizosphere as well as the organisms that exist within it. The contents of exudates and the amount of substance released is reliant on multiple factors, including the root system architecture, presence of harmful microbes, and metal toxicity. The species of the plant as well as its developmental stage can also influence the chemical mixture that is released through exudates. The contents may include ions, carbon-based compounds, amino acids, sterols, and many other chemical compounds. At sufficient concentrations, exudates are capable of mediating both positive and negative plant-plant and plant-microbe interactions.
The physiological mechanism by which exudates are released is not entirely understood and varies depending on the stimulus as well as the contents of the secreted exudate. Various types of root cells have been suggested to sense microbes or compounds in the soil and secrete exudates accordingly. One example of root exudation occurs when plants sense elicitors and prime for a stress or defense response. It is believed that elicitors, such as methyl jasmonate and salicylic acid, are sensed by receptors on root cap cells, often referred to as border cells. This induces a change in gene regulation, up-regulating specific defense or stress-response genes. This differential gene expression results in metabolic changes that ultimately result in the biosynthesis of primary and secondary metabolites. These metabolites exit cells in the form of exudates through transporters that vary depending on the chemical structure of the metabolites. The exudate secretion is then able to elicit a defense response against harmful microbes within the soil.