Ringel–Hall algebra
In mathematics, a Ringel–Hall algebra is a generalization of the Hall algebra, studied by Claus Michael Ringel (1990). It has a basis of equivalence classes of objects of an abelian category, and the structure constants for this basis are related to the numbers of extensions of objects in the category.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.