Riemann–Siegel theta function

In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as

for real values of t. Here the argument is chosen in such a way that a continuous function is obtained and holds, i.e., in the same way that the principal branch of the log-gamma function is defined.

It has an asymptotic expansion

which is not convergent, but whose first few terms give a good approximation for . Its Taylor-series at 0 which converges for is

where denotes the polygamma function of order . The Riemann–Siegel theta function is of interest in studying the Riemann zeta function, since it can rotate the Riemann zeta function such that it becomes the totally real valued Z function on the critical line .

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.