Rencontres numbers

In combinatorial mathematics, the rencontres numbers are a triangular array of integers that enumerate permutations of the set { 1, ..., n } with specified numbers of fixed points: in other words, partial derangements. (Rencontre is French for encounter. By some accounts, the problem is named after a solitaire game.) For n  0 and 0 ≤ k  n, the rencontres number Dn, k is the number of permutations of { 1, ..., n } that have exactly k fixed points.

For example, if seven presents are given to seven different people, but only two are destined to get the right present, there are D7, 2 = 924 ways this could happen. Another often cited example is that of a dance school with 7 couples, where, after tea-break the participants are told to randomly find a partner to continue, then once more there are D7, 2 = 924 possibilities that 2 previous couples meet again by chance.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.