Reaction quotient

In chemical thermodynamics, the reaction quotient (Qr or just Q) is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry, at a particular point in time. Mathematically, it is defined as the ratio of the activities (or molar concentrations) of the product species over those of the reactant species involved in the chemical reaction, taking stoichiometric coefficients of the reaction into account as exponents of the concentrations. In equilibrium, the reaction quotient is constant over time and is equal to the equilibrium constant.

A general chemical reaction in which α moles of a reactant A and β moles of a reactant B react to give ρ moles of a product R and σ moles of a product S can be written as

.

The reaction is written as an equilibrium even though in many cases it may appear that all of the reactants on one side have been converted to the other side. When any initial mixture of A, B, R, and S is made, and the reaction is allowed to proceed (either in the forward or reverse direction), the reaction quotient Qr, as a function of time t, is defined as

where {X}t denotes the instantaneous activity of a species X at time t. A compact general definition is

where Пj denotes the product across all j-indexed variables, aj(t) is the activity of species j at time t, and νj is the stoichiometric number (the stoichiometric coefficient multiplied by +1 for products and –1 for starting materials).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.