Quintic threefold
In mathematics, a quintic threefold is a 3-dimensional hypersurface of degree 5 in 4-dimensional projective space . Non-singular quintic threefolds are Calabi–Yau manifolds.
The Hodge diamond of a non-singular quintic 3-fold is
1 | ||||||
0 | 0 | |||||
0 | 1 | 0 | ||||
1 | 101 | 101 | 1 | |||
0 | 1 | 0 | ||||
0 | 0 | |||||
1 |
Mathematician Robbert Dijkgraaf said "One number which every algebraic geometer knows is the number 2,875 because obviously, that is the number of lines on a quintic."
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.