Quillen metric

In mathematics, and especially differential geometry, the Quillen metric is a metric on the determinant line bundle of a family of operators. It was introduced by Daniel Quillen for certain elliptic operators over a Riemann surface, and generalized to higher-dimensional manifolds by Jean-Michel Bismut and Dan Freed.

The Quillen metric was used by Quillen to give a differential-geometric interpretation of the ample line bundle over the moduli space of vector bundles on a compact Riemann surface, known as the Quillen determinant line bundle. It can be seen as defining the Chern–Weil representative of the first Chern class of this ample line bundle. The Quillen metric construction and its generalizations were used by Bismut and Freed to compute the holonomy of certain determinant line bundles of Dirac operators, and this holonomy is associated to certain anomaly cancellations in Chern–Simons theory predicted by Edward Witten.

The Quillen metric was also used by Simon Donaldson in 1987 in a new inductive proof of the Hitchin–Kobayashi correspondence for projective algebraic manifolds, published one year after the resolution of the correspondence by Shing-Tung Yau and Karen Uhlenbeck for arbitrary compact Kähler manifolds.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.