Pseudo-uniform polyhedron

A pseudo-uniform polyhedron is a polyhedron which has regular polygons as faces and has the same vertex configuration at all vertices but is not vertex-transitive: it is not true that for any two vertices, there exists a symmetry of the polyhedron mapping the first isometrically onto the second. Thus, although all the vertices of a pseudo-uniform polyhedron appear the same, it is not isogonal. They are called pseudo-uniform polyhedra due to their resemblance to some true uniform polyhedra.

There are two known pseudo-uniform polyhedra: the pseudorhombicuboctahedron and the pseudo-great rhombicuboctahedron. It is not known if there are any others; Branko Grünbaum conjectured that there are not, but thought that a proof would be "probably quite complicated". They both have D4d symmetry, the same symmetry as a square antiprism. They can both be constructed from a uniform polyhedron by twisting one cupola-shaped cap.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.