Projective module

In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below.

Every free module is a projective module, but the converse fails to hold over some rings, such as Dedekind rings that are not principal ideal domains. However, every projective module is a free module if the ring is a principal ideal domain such as the integers, or a (multivariate) polynomial ring over a field (this is the Quillen–Suslin theorem).

Projective modules were first introduced in 1956 in the influential book Homological Algebra by Henri Cartan and Samuel Eilenberg.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.