Poroelasticity

Poroelasticity is a field in materials science and mechanics that studies the interaction between fluid flow, pressure and bulk solid deformation within a linear porous medium and it is an extension of elasticity and porous medium flow (diffusion equation) . The deformation of the medium influences the flow of the fluid and vice versa. The theory was proposed by Maurice Anthony Biot (1935, 1941) as a theoretical extension of soil consolidation models developed to calculate the settlement of structures placed on fluid-saturated porous soils. The theory of poroelasticity has been widely applied in geomechanics, hydrology, biomechanics, tissue mechanics, cell mechanics, and micromechanics.

An intuitive sense of the response of a saturated elastic porous medium to mechanical loading can be developed by thinking about, or experimenting with, a fluid-saturated sponge. If a fluid- saturated sponge is compressed, fluid will flow from the sponge. If the sponge is in a fluid reservoir and compressive pressure is subsequently removed, the sponge will reimbibe the fluid and expand. The volume of the sponge will also increase if its exterior openings are sealed and the pore fluid pressure is increased. The basic ideas underlying the theory of poroelastic materials are that the pore fluid pressure contributes to the total stress in the porous matrix medium and that the pore fluid pressure alone can strain the porous matrix medium. There is fluid movement in a porous medium due to differences in pore fluid pressure created by different pore volume strains associated with mechanical loading of the porous medium. In unconventional reservoir and source rocks for natural gas like coal and shales, there can be strain due to sorption of gases like methane and carbon dioxide on the porous rock surfaces. Depending on the gas pressure the induced sorption-based strain can be poroelastic or poroinelastic in nature.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.