Poisson binomial distribution
In probability theory and statistics, the Poisson binomial distribution is the discrete probability distribution of a sum of independent Bernoulli trials that are not necessarily identically distributed. The concept is named after Siméon Denis Poisson.
Parameters | — success probabilities for each of the n trials | ||
---|---|---|---|
Support | k ∈ { 0, …, n } | ||
PMF | |||
CDF | |||
Mean | |||
Variance | |||
Skewness | |||
Ex. kurtosis | |||
MGF | |||
CF | |||
PGF |
In other words, it is the probability distribution of the number of successes in a collection of n independent yes/no experiments with success probabilities . The ordinary binomial distribution is a special case of the Poisson binomial distribution, when all success probabilities are the same, that is .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.