Point-set triangulation
A triangulation of a set of points in the Euclidean space is a simplicial complex that covers the convex hull of , and whose vertices belong to . In the plane (when is a set of points in ), triangulations are made up of triangles, together with their edges and vertices. Some authors require that all the points of are vertices of its triangulations. In this case, a triangulation of a set of points in the plane can alternatively be defined as a maximal set of non-crossing edges between points of . In the plane, triangulations are special cases of planar straight-line graphs.
A particularly interesting kind of triangulations are the Delaunay triangulations. They are the geometric duals of Voronoi diagrams. The Delaunay triangulation of a set of points in the plane contains the Gabriel graph, the nearest neighbor graph and the minimal spanning tree of .
Triangulations have a number of applications, and there is an interest to find the "good" triangulations of a given point set under some criteria as, for instance minimum-weight triangulations. Sometimes it is desirable to have a triangulation with special properties, e.g., in which all triangles have large angles (long and narrow ("splinter") triangles are avoided).
Given a set of edges that connect points of the plane, the problem to determine whether they contain a triangulation is NP-complete.