Picard–Lefschetz theory

In mathematics, Picard–Lefschetz theory studies the topology of a complex manifold by looking at the critical points of a holomorphic function on the manifold. It was introduced by Émile Picard for complex surfaces in his book Picard & Simart (1897), and extended to higher dimensions by Solomon Lefschetz (1924). It is a complex analog of Morse theory that studies the topology of a real manifold by looking at the critical points of a real function. Pierre Deligne and Nicholas Katz (1973) extended Picard–Lefschetz theory to varieties over more general fields, and Deligne used this generalization in his proof of the Weil conjectures.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.